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Digital engineering is increasingly introduced for managing and supporting the development of systems for space.

However, few academic teams have the competency needed tomanage projects using digital engineering and systems

engineering. The subject of this paper is an academic CubeSat project in which a variety of digital engineering

techniques are used. The tailoring that has been applied to fit the academic environment including students from

different disciplines and levels of maturity is described. This paper shows how a customized Scrummethodology for

hardware and software integratedwith aworkflow in a digital tool environment has given positive results for both the

team and the system development. This paper also discusses how to introduce new members to the team and how to

train them to work with digital engineering as a multidisciplinary team. This paper presents how the systems

engineering and project management activities have been integrated into the academic CubeSat project, evaluate

how well this fusion worked, and estimate its potential to be used as a guide for other digital engineering projects.

I. Introduction

T HE digital transformation that is taking place in all elements of
society calls for continuously updated knowledge for leaders

and for engineers. The increasing project complexity introduced by
the advent of embedded systems and cyber-physical systems (CPSs),
and the tools needed for developing them challenges managers to
rethink the approach to leading projects and people to ensure knowl-
edge management and project success [1]. While this is challenging
in industrial settings with experienced engineers and support sys-
tems, developing complex systems in an academic environment adds
factors such as high turnover, coursework, lack of multidisciplinary
teamwork experience, and fewer competent systems engineering and
project management resources.
Digital engineering (DE) and model-based systems engineering

(MBSE) are proposed as tools to manage the challenges of developing
systems, delivering integrated multidisciplinary product development
from concept through the product life cycle to retirement.We adopt the
DEdefinition of theU.S. Department of Defense (DoD): “an integrated
digital approach that uses authoritative sources of system data and
modelsand a continuumacross disciplines to support lifecycle activities
from concept through disposal” ([2], p. 340). For MBSE, we use the
definition provided by International Council of Systems Engineering:
“The formalized application of modeling to support system require-
ments, design, analysis, verification and validation activities beginning
in the conceptual design phase and continuing throughout development
and later life cycle phases” [3]. However, choosing the approach tools
and methods to introduce and adopt DE is equally challenging and
requires both human and technical resources.
Concurrent with the advent of DE, approaches such as Scrum and

Extreme Programming (XP) have increased in popularity for both
hardware and software [4]. The Scrum methodology allows for agile

product development, so that the project can respond to changing
demands from stakeholders and new technology developments while
continuously delivering features. The digital Scrum tools also pro-
vide a system that supports project management through feature and
schedule management, and product management through scope and
verification management, and may be integrated with the digital
design artifacts. XP takes iterative development to an extreme level,
with short iterations, continuous test development, pair program-
ming, continuous integration, and frequent releases [5]. In software
projects where there is scientific code development and requirements
are either unknown at the beginning or frequently change, XP or
Scrum are suitable over other traditional approaches [6].
Students in academic projects face the challenge of balancing

coursework and project work. The students follow the school year,
so long-term academic projects must adapt their expectations to this
fluctuation. There is also a high natural turnover when students
graduate, which continuously changes the team composition. Aca-
demic projects may have fewer resources and fewer support systems
that product development often necessitates (e.g., a procurement
department or quality assurance knowledge) [7,8]. The university
context requires attention to knowledge transfer and management,
and DE is a tool that can be applied and must be managed to enable a
good development environment.
This paper is based on the longitudinal case study of an academic

CubeSat where the students typically join in September and leave in
June the following year, although some students join in January and
leave in June the sameyear. They contribute to the development of the
CubeSat through work toward a thesis in software, hardware, or
theoretical studies.We explore the cycle of development of aCubeSat
in an academic environment using DE tools and describe how they
have been tailored. Furthermore, we discuss how MBSE has been
applied and what barriers for use of were experienced. We found that
using agile practices powered with DE tools and processes greatly
improved information sharing and knowledge management, and that
the introduction of remotely accessible hardware-in-the-loop (HIL)
setups coupled with a defined workflow enabled improved verifica-
tion, validation, and integration activities.

II. Background

A. Academic CubeSat Projects

Since the definition of the Cube Satellite (CubeSat) standard
around the year 2000, applied space technology and satellite produc-
tion has become a staple offering at universities [9]. At first, most
initial CubeSat projects sought to evaluate the viability of CubeSats
as a concept, and limited their initial goal to communication. Over the
last 20 years, themissions have evolved in sophistication into projects
with more advanced research objectives [10]. To meet the needs of
this burgeoning industry, a substantial supply chain for CubeSat
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buses and subsystems has been established so that university
researchers can then focus upon their main task: defining and build-
ing the payload and without having to build the rest of the spacecraft
bus around the payload too. In most cases this saves both cost and
development time.
CubeSats are built from units (U) of 10 cm × 10 cm × 10 cm,

ranging from 0.25U to 16U, with 3U being the most common size
[11]. Larger satellites at 6U and 12U are becoming increasingly
popular. As the technology matures, the satellites’ capabilities
increase, for example, including advanced deployable mechanisms
for solar panels and instruments. With this maturity the missions are
becoming more advanced and can deliver more valuable results.
The life cycle of an academic CubeSat project typically starts with

an idea for a research project or an educational CubeSat, then secur-
ing the funding, and moving on to the preliminary design phase, the
critical design phase, launch of the CubeSat (when funding is avail-
able). Then follows the operational phase with payload data collec-
tion and analysis (if successful), and finally decommissioning at the
end of spacecraft lifetime. This takes from 1 to 5 years, with an
average of 3.8 years [12].
The CubeSat subsystems are usually highly integrated, and

modularity is ensured both in software and hardware [13]. As the
cost of fixing problems increases later in the development cycle,
during integration, testing, and maintenance [14], early integration
and testing are encouraged. To a large degree, the subsystems can
be considered a CPS because their performance depends on both
the hardware and software developed. The integration process can
be improved by using advanced, industrial type electronics and
computational platforms during development and test. Using as
many commercial-off-the-shelf (COTS) components as possible,
lead time is reduced, and development can be based upon well-
known tools with little or no adaptation. There is an opportunity
to reduce the risk of late discovery of bugs by proactively using
HIL setups throughout the development cycle, enabling iterative
development.
To date, over 400 university satellites have been launched, with

more than 500 in the pipeline [11]. The educational benefit and the use
of CubeSat programs as an introduction to applied space technology
has been much discussed in the CubeSat community [7,15–17]. The
first educationalCubeSats provided students anopportunity to followa
space project from start to launch within their time at a university.
Hands-on projects give students a realistic but manageable “first
contact” with space projects and space industry [18]. Institutional
actors such as NASA and European Space Agency (ESA) promote
and support educational CubeSats by enabling contact and access to
space professionals, and by facilitating courses and workshops as well
as launch for the best qualified satellites through their Educational
Launch of Nanosatellites (ELaNa) [19] and Fly-your-satellite [20]
programs. This applied work also motivated many university teams
to create spin-offs from their projects, becoming central players in the
CubeSat community and a part of the supply chain. They now form a
substantial ecosystem where it is possible to procure everything from
single components to a turn-key mission where you define your pay-
load and the satellite provider does the rest.

B. Agile Methodology and Development Practices

Using agile methodologies in software and hardware development
has gained popularity in the past decades, focusing on continuous
feedback from the customer and the ability to react to a changing
environment [21,22]. The word “agile” has its etymological source
from the Latinword agilis, whichmeans “can bemoved easily, light,”
and from the French word agere, which means “to drive, to be in
motion” [23]. In software development, the agile methodology
gained popularity in the late 1990s, and “Manifesto for Agile Soft-
wareDevelopment” [24]with its 12 guiding principleswas published
in 2001. The manifesto includes principles that focus on delivering
the highest value to the customer, to allow for changing requirements,
frequent and iterative deliveries of software, motivating individuals,
face-to-face conversations, measuring progress through working

software products, simplicity, reflexive practices, and believing that
the best designs come from self-organizing teams [24].
At universities, software and hardware development serve both to

assist scientists in gathering data and for teaching technology and
product development. In most cases, the development is not done
with the purpose of delivering a mass-produced product or service,
but for the purpose of contributing to new knowledge and research. A
key challenge of scientific software development is that the scientists
often have formal education in a field other than computer science,
for example, in biology, remote sensing, electronics, or radio tech-
nology, but need custom software to address their discipline-specific
research questions [25,26]. Given the open-ended nature of research
projects, the process of requirements specification lacks maturity in
comparison to industrial development projects, making it challeng-
ing to plan the development and to test the software. Furthermore, the
scientific software development does not “stop” when the first
research project ends, but it may be reused in a different research
project with different goals, and new scientists desiring new func-
tionality [27].
Best practices for scientific software development include write

programs so that the other researchers understand and stick to a code
style and formatting, make the frequently used commands easily
accessible, incremental development with continuous testing, use
version control, “plan for mistakes” and use unit testing, improve
performance after the functionality is there, document the design and
interfaces and choices made during development, and collaborate on
code development and do code reviews [25]. Typical challenges
facing scientific software teams are “compromising between feature
demands and quality control; code ownership and management dur-
ing evolution; data organization and curation; and quality assurance
of heterogeneous components, : : : and a tendency for prototyping
practices to be employed even when production scientific software
was being written ([28] pp. 6–7).” In the work of Arvanitou et al.,
software practices for scientific development were discussed based
on an extensive literature study [26]. They found that most scientific
software engineering literature has studied process improvement,
ease of development, testing and verification, project management,
coding, and quality assurance. Furthermore, performance, maintain-
ability, and development productivity were the highest priorities for
the scientists.
In a survey of agile methods in scientific programming in dis-

ciplines such as bioinformatics, climate scientists, and aerospace, it
was found that the agile method XP has been applied successfully in
projects where requirements and design cannot be known in the
planning phase of a project [28]. Furthermore, agile practices such
as iterative development, continuous integration, and version con-
trol were prominent. In contrast to commercial and industrial soft-
ware development, there is no declared or identified customer to
review the software features. However, scientific publications can
be analogous to customers in which the scientists receive feedback
on what they have developed [28,29]. Sletholt et al. [27] conducted
a literature review against 35 agile practices from Scrum and XP,
and found some support that agile practices are suited to testing-
related activities.
Agile practices in teaching have gained popularity since the 2000s

[30,31], where Scrum or XP have been the most prominent methods,
and typically found in either software or capstone projects. The
students benefit from learning hands-on project experience, learning
to prioritizework tasks, gaining communication skills, and providing
and receiving assessment on work done openly. However, there may
be challenges in terms of balancing time commitments, for example,
having concurrent development sessions, or tailoring the Scrum
processes to suit the different needs of teammembers [31]. Lundqvist
et al. [32] reported on teaching agile in cooperation with industry.
They highlighted the importance of ownership, the engagement of
customer (also called the industrial partner), and the allocation of
academic resources to support the academic teams.
According to a study fromAustralia in 2015, employers want both

technical skills and nontechnical professional skills such as “being
able to communicate effectively,” “ability to organize work and
manage time effectively,” “beingwilling to face and learn from errors
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and listen openly to feedback,” and “being able to empathizewith and
work productively with people from a wide range of backgrounds”
([33], pp. 263–264). A similar study conducted in Norway also
highlighted these points [34]. However, the traditional form of class-
room teaching may not facilitate the development of these skills
effectively. Using CubeSats for training students in cross-discipli-
nary projects has been studied and discussed [7,12,15–17]. Some
principles for agile systems engineering that have been suggested
include 1) focus on delivering customer value, 2) team ownership,
3) embrace change, 4) continuous integration, 5) test driven, and
6) taking a scientific approach to systems’ thinking [29,35]. Many of
these principles are aligned with transferable skills students can be
expected to have when they graduate [33,34].

C. Digital Engineering

DE goes beyond just using computer tools to aid engineering, but
includes the engineering process and approach to development.
Choosing a DE strategy should be done based on the resources
available and needs of the organization. A framework that assesses
the DE competence was developed by the Systems Engineering
Research Center (SERC), which looked at the following areas:
adoption, velocity/agility, knowledge transfer, user interface, and
quality [36]. Although the framework did not specify how tomeasure
the competence in each of the areas, it listed different factors and
examples of processes or outcome metrics that could be used. Some
factors identified can be categorized as objectives for why DE
measures are incorporated, others as factors that may influence the
adoption, and other factors as outcomes and direct competencies the
organization can gainwithDE practices. DE has a strong relationship
with MBSE and model-centric engineering (MCE), and establishing
a “single source of truth” for a project [2]. However, there is currently
no single solution for the whole system life cycle to provide an
authoritative source of truth. Most work forces and organizations
need to transition their methods and methodologies to DE and
incorporate it into their engineering practices, and ensure possibilities
for collaboration and information sharing throughout the system life
cycle between developers and the stakeholders. Most university
CubeSat teams use some degree of DE, such as employing version-
controlled software repositories, using CAD tools, shared cloud
documentation, and using cloud-based issue tracking or project
management tools to achieve integration in the management of
knowledge [12].
Garzaniti et al. [37] also describe the use of Scrum using an online

tool to manage the work in an academic CubeSat team. The results
presented were from the preliminary design phase of the space
hardware. They found that the Scrum approach was helpful for
reacting to unforeseen changes and delays, even when the changes
impacted external manufacturers. Furthermore, it takes time for the
team to become accustomed to Scrum and the scoring of issues,
similar to [31]. Huang et al. [38] describe the development of a
CubeSat using agile practices. They highlight the importance of
tailoring the approach to the needs of the project, using interactive

design reviews to produce as much feedback as possible, empower-
ing smaller teams to enable faster decision making and ownership,
and allowing for continuous testing and improvement.

III. HYPSO Case Study

A. HYPSO CubeSat Project

In this paper we report on the case study of the CubeSat project
Hyper-Spectral SmallSat for Ocean Observation (HYPSO). It is the
first research CubeSat mission for the Norwegian University of
Science and Technology (NTNU), as a part of a strategy of monitor-
ing coastal areas using autonomous assets [39]. The project’smission
is to “To provide and support ocean color mapping through a Hyper-
spectral Imager (HSI) payload, autonomously processed data, and
on-demand autonomous communications in a concert of robotic
agents at the Norwegian coast.”
The university CubeSat team develops the payload, which con-

sists of an optical telescope, a COTS camera unit, a COTS process-
ing unit, an electronics interface board, an electrical harness,
software to control the payload and to perform the image process-
ing, and mechanical support structure that also acts as the mechani-
cal interface to the satellite bus. Block diagrams of the spacecraft
and the payload are given in Figs. 1 and 2, respectively. Apart from
the above-mentioned COTS components, all have been developed
in-house. In addition to the payload, there is also development of a
local ground station and the mission operations center and associ-
ated procedures and functionality, effectively resulting in a system
of systems (SoS).
TheCubeSat project team includes 10–20M.Sc. andB.Sc. students,

1 electronics engineer, a procurement officer, 6–8 Ph.D./PostDoc
researchers, and professors supervising the thesis work or offering
experience and support. The project manager is a Ph.D. candidate
examining the value of MBSE to deliver the CubeSat on time and
within schedule. The researchers typically join the project for 2–4
years, and the students for 4 (B.Sc.) or 9 (M.Sc.) months when they
write their thesis. The backgrounds of the students vary, but typically
they are enrolled in engineering cybernetics, embedded systems,
electronic systems, product development, or material science. Some
of the students have experiencewith working in teams, and sometimes
multidisciplinary development through previous coursework or vol-
unteer organization. However, not many have experiencewith product
development, which typically has more unknowns than course-organ-
ized project work.
The project had its first major milestone in December 2017, the

mission design review (MDR). There had been some software devel-
opment before this, mostly focused on algorithm development for
processing, without target hardware or system in mind. The overall
system maturity timeline is shown in Fig. 3, and a more detailed
timeline of the progress in 2020 is shown in Fig. 4. Most of the
integration and HIL testing occurred in 2020.

Fig. 1 Overview of the HYPSO CubeSat and its subsystems. Model made using CORE/GENESYS.
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B. Software System Architecture

The high-level system architecture is given in Fig. 5, where the
flow of signals and data is bidirectional. Some of the items in the
software architecture are developed in-house, whereas others are
delivered by suppliers, or interfaced as a service. The architecture
was not clear at the beginning of the project and has been gradually
defined throughout the system development life cycle. The compo-
nents have also undergone continuous development, as well as
updates to the interfaces to a certain degree. The reasons for continu-
ous development and changes are new functionality requirements
and new performance requirements, the inherent constraints of the
chosen components, as well as the learning and discovery process of
developing a CubeSat system for the first time.

Modular software components require that interfaces and software
architecture are defined. Although the initial software architecture
was developed in late 2018, not all interfaces between different
components were defined. This meant that a lot of work was required
to integrate the in-house-developed components. Furthermore, the
interface definition to other spacecraft subsystems had not been
considered before 2018, such that the components also needed
adaption to enable integration to the satellite bus. The software-based
subsystems allow for hardware to host the functionality of several
subsystems. For the HYPSO spacecraft (Fig. 1), the subsystems
“SYS1.3 ADCS Subsystem” and “SYS1.5 OBC Subsystem” are
both hosted on the same physical component, the flight controller
(FC). On the payload, the physical on-board processing unit (OPU)

31.12.2017 31.12.2018 31.12.2019 March 31.12.2020

Compression and image
processing development

First GitHub organization
pull request

Target hardware selected
SW architecture

defined

GitHub flow
introduced

Corona lockdown

Mission
Design
Review

Preliminary
Design
Review

Preliminary
Design

Review 2

Critical
Design
Review

SW V1.0.0

SW V1.1.0

Fig. 3 Overall timeline of in-house-developed product maturity, including both hardware and software (SW).

March June September November

First Hardware-in-the-loop
setup

Postgres test
results database

Use automated tests

Operations
rehearsals

Telemetry service
development

SW V1.1.0

Critical
Design
Review

Operations
Design
Review

Fall
Kick-off

Flight model SW
specification

SW V1.0.0

Fig. 4 Timeline of product maturity through 2020. “SW” refers to in-house developed software.

Fig. 2 Overview of the payload developed by the HYPSO team. Model made using CORE/GENESYS.
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hosts the image processing pipeline, the camera control, the payload
operating system, and telemetry services for the payload.
In Fig. 5, each partition is composed of tightly integrated physical

and software subsystems, namely, a cyber-physical SoS. The space
environmentwill affect each of the interfaces between the subsystems
and the performance of the spacecraft itself, and the software sub-
systems need to adjust (e.g., pointing the spacecraft toward the sun
when the battery levels get low) to ensure functionality and perfor-
mance. Additionally, this means that to develop hardware compo-
nents, one needs to consider the software, and when developing
software components, one needs to consider hardware limitations,
such as data transfer speed limitations, or processing hardware
physical layout. Furthermore, the Mission Control Software and
Mission Operations Center were not available until mid-2020, which
led to the discovery of new functionality and software adjustments to
facilitate operations of the payload. When the spacecraft is opera-
tional and commissioned, the operator will only interact with the first
box (the telemetry display and the hypso-cli [user interface trans-
lating commands to packets used for communicating] or nanoMCS
interface) and the OPU services on the HYPSO spacecraft, under the
expectation that the underlying system functions as expected.
Despite the many hardware and software systems in between the
operator and the spacecraft, they must exchange information cor-
rectly and in a timely manner.

C. Tailoring of the Agile Methodology

The Scrum methodology has been tailored such that the team
members deliver either a product increment or a thesis, as shown in
Fig. 6. The sprints typically lasted 2 weeks, and there was a daily
scrum meeting (a stand-up) in which issues were raised or discussed
for clarification, in addition to general keeping-in-touch with each
other. The team uses GitHub for managing the code repository and
schematics and providing version control and release management

[12]. GitHub is a service that provides users of several different
backgrounds and development approaches to work together and at
the same time have a coherent overview of the current status of the
code base. GitHub has a plugin for managing Scrum with a kanban
board. Kanban boards, from the Japanese word meaning billboard,
are used to visualize andmanageworkload by providing an overview
of work-in-progress, backlogged items, blocked items, done items,
and review-in-progress items. A kanban board is based on pulling
tasks instead of being pushed, which enables the students to take
control of their own workload. At the same time, the Scrum master
(called group leader in Fig. 6) can controlwhich items are included on
the board, so the work that gets done is pertinent to the schedule and
the product to be delivered.
Planning and developing a complex system are not guaranteed to

align well with research goals found in academia. Finding syner-
gies and acknowledgingwhat needs to be prioritized can benefit the
development of a CubeSat as well as providing a better foundation
to build and expand research activities upon. Although Scrum
traditionally has a goal of delivering a predefined minimum viable
product (MVP) at the end of a sprint, this was not the case for
HYPSO. In this case study, participants contribute to components
ranging from hardware to user interface (UI). Until the first agreed
software release at the end of 2020, as shown in Fig. 4, the sprint
backlogs included issues that the team members “wanted to focus
on” and had time to work on. There was an agreement between the
team members when selecting issues, and there was a continuous
focus on working on issues labeled as “bugs” or mission-required
functionality (defined by the group leader in conjunction with the
project manager) instead of issues categorized as “enhancements”
in GitHub. Furthermore, each participant developed modules with-
out defined interfaces between them. This made retaining the value
added from different contributions, and especially integration,
unnecessarily difficult and time-consuming. To mitigate these

Fig. 6 Tailored Scrum process with a product backlog consisting of both thesis tasks and project work tasks.

Fig. 5 The software system architecture. CAN, controlled area network; EPS, electrical power subsystem; FC, flight computer; GS, ground station;
NNG, nanomsg Next Generation; OPU, on-board processing unit; PC, payload controller; RF, radio frequency.
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challenges a commonworkflowwas proposed and became a part of
the on-boarding procedure, as well as providing the students with a
common repository.
Some of the contributors only participate in the development for as

little as one semester, and there are limitations to howcomplicated the
workflow and how complicated the development tools can be. To
achieve a convenient workflow, development needs to be coherent
and amultitude of development considerations have to bemade clear,
as well as followed-up to ensure the desired quality of the project and
product. Continuous integration (CI), or the practice of integrating
contributions from multiple developers into a common software
product, is beneficial for collaborative code development [40], and
it is also promoted in XP practices. Aworkflow focusing on integra-
tion was then proposed, i.e., the GitHub workflow [41]. This work-
flow states that the main branch shall always be working, and any
feature or fix to be included in the code base shall originate from a
dedicated branch; i.e., there are no development branches that branch
out beyond the main branch. This workflow encourages contributors
to frequently merge their code contributions into a central repository
for review and testing, as is considered a good practice in software
development [41].

D. Verification and Validation Using Hardware-in-the-Loop Setups

Verification and validation are important to ensure that the product
functions as specified (verification) and meets the needs of an end-
user (validation). Collectively, these will be referred to as testing. In
the HYPSO project several testing regiments were developed to
expand the number of reviewers. The software group leader empha-
sized that approval of a pull request (PR) should be done by reviewers
not necessarily involved in the development of the code. In other
words, the contributors were required to describe their changes or
additions in such a way that any software teammember could be able
to review them. Even though not every teammember is able to review
every change, this motivates the developer to make code modifica-
tions in such a way that they are understandable to any person
responsible for reviewing said changes. For a change to become part
of the master branch, at least one other person has to approve the
suggested changes. When the code changes are committed to a
separate feature branch of the central repository, it is then built and
tested by a team member before being accepted as a valid code base
addition. If no adverse effects are detected during review, the pending
PR is then merged into the master branch. This is the manual process
of testing and ensures that specifically the newly added feature or fix
is tested independently and sufficiently.
In addition to the manual process, several automatic scripts have

been developed to do routine tests of nominal operations of the

system. While simplifying the process of testing any proposed
changes on the target hardware, this also provides a platform for
other types of testing. Several installations of the system, laid out as
closely as possible with the actual satellite, were set up to be
interfaced remotely by any team member, namely, the HIL setups.
HIL setups can be used for verification of functional requirements
[42], and if deployed on target hardware, they can also verify
performance requirements. Because university CubeSat projects
often have limited funding available, having a full engineering
model (an exact replica of the system) of the satellite bus and its
subsystems is not always feasible. Instead, using a FlatSat (a flat
satellite) with subsystems provides many of the same functions at a
much lower cost. The satellite bus providers often sell FlatSat
services at lower fees because the subsystems that constitute the
FlatSat can be shared between different customers, or the subsys-
tems can be development models used by the satellite bus providers
themselves.
Two HIL setups were developed to facilitate verification and

validation activities, and to improve early integration efforts. The
HIL setups are shown in Fig. 7 and are called LidSat (because the
systems are mounted in an Electrostatic Discharge (ESD)-box lid)
and pHIL (payload HIL). Both setups use target hardware for the
software subsystems and have different purposes. The pHIL setup is
mainly for testing payload and its communication interface with the
command line interface, whereas the LidSat is used to test both the
payload software and the integration of the payload to the spacecraft.
The pHIL is connected to a workstation that is running a Jenkins
continuous integration server. To test a branch of the software, the
branch is first compiled and initiated on the payload. Then Jenkins
runs a set of tests on the target hardware. The outcome of the tests
(both whether they pass and their performance) is recorded in a
database. The central database allows the developers to see how
various branches have performed during the test. The test set includes
sending several commands that operators commonly use, and ensur-
ing that the correct results are obtained for different sets of parame-
ters. The LidSat has both the electrical power subsystem (EPS) and
payload controller connected via a controlled area network (CAN),
with an additional connection to the rest of the spacecraft subsystems
on a FlatSat in Vilnius through internet with a CAN-over-internet
bridge. These are themain interfaces for the payload, and as such, the
FlatSat replicates integration with the spacecraft.
Furthermore, integration testing has been automated by scripting

commands to be sent from the operator computer to the payload.
Scripts have been developed to aid other hardware team members in
testing nominal operations when mechanical changes are made, and
these scripts are also used in a test-to-failure scheme where the

Fig. 7 Hardware-in-the-loop test setups.
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procedures are repeated a set number of times or until failure. A script
testing the potential performance alterations was also used on the
system, as well as a test of the subsystem communication and
integration. All these tests are run routinely in an effort to uncover
unforeseen adverse effects of any proposed code changes.

IV. Experience Using Digital Engineering in an
Academic Project

The product development life cycle with its DE tools and methods
are shown in Fig. 8. Note that specific tools used for analysis are not
shown, as they depend on the specific discipline and task the team
member is working on. This life cycle is supported by the GitHub
workflow and the Scrum method for daily management of work.
There are many improvements that can be made, but the DE strategy
presented here is low cost and makes use of well-established proc-
esses and tools that are readily available. Furthermore, while some
training is needed and there should be an agreement to be consistent,
most HYPSO teammembers agree that the benefits greatly outweigh
the cost.
In this sectionwewill discusswhich factors influence the approach

to DE, evaluate the effectiveness of using agile practices and the
educational aspect of the HYPSO project, and also provide some
insights gained during the COVID-19 outbreak and how this relates
to DE [8].

A. Choice of Digital Engineering Strategy

The choice of DE processes for the HYPSO project team was
continuously evaluated, with introduction of new methods and tools
as needed. The overall strategy was to adopt and test different DE
approaches throughout the project. Typically, the solutions chosen
were based on previous knowledge or experience from the team
members in other projects. This previous experience also made
training of other team members easier, which is a critical component
in the adoption of new methods and tools.
From the list given by McDermott et al. [36], the factors listed in

Table 1 were chosen. The factors were selected by reviewing the
discussions in the project team that led to the DE approach. No
quantitative measures of DE competency before and after introduc-
tion of tools were done; however, results from action research have
been used as basis for this paper.

1. Adoption

TheDE tools were based onwhat would have a high adoption rate,
be open source or free license, and that therewould be little resistance
from the students. For example, the project team conducted polls to
decide on which cloud file repository to use, which communication
platform to use, and which video conferencing tool to use. This
means choosing tools with good user interface, or tools that have
been used in other courses, closely linked toworkforce knowledge, to
reduce the need for training as there are little general resources for

Tes�ng and 
integra�on

Maintenance

Planning

Analysis

Design

Implementa�on

LidSat/pHIL

LidSat/pHIL

• Kanban
• Stand-ups

• Stand-ups
• 3D-print
• CAD/CAE

• Kanban
• Stand-ups
• 3D-print

• Stand-ups
• 3D-print
• CAD/CAE

• Stand-ups
• 3D-print
•Machining

Operators

Central, shared, 
digital informa�on 

system

Fig. 8 Product development life cycle with digital engineering methods and tools.

Table 1 List of factors influencing digital engineering strategy at
HYPSO project

Digital engineering competencies

Category Factor Category Factor

Quality Traceability Knowledge
transfer

Better information
sharing

System quality Better information
accessibility

Reduce defects/errors Improved
collaboration

Improved system
design

Better knowledge
capture

Increased effectiveness Improved architecture
Strengthened testing Adoption General resources for

implementation
Velocity/
Agility

Improved consistency Workforce knowledge

Reduce time DE processes
Increased capacity for

reuse
Training

Early V&V DE tools
Easy to make changes Demonstrating benefits
Higher level of support

for integration
People willing to use

tools

User
experience

Improved system
understanding
Reduce effort

Higher level support
for automation

Better decision making

Right-hand side shows the sociotechnical factors, whereas the left-hand side is more
technical.
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implementation. The implementation efforts mainly have to be per-
formed by students or group leaders (Ph.D. candidates). The DE
processes were selected based on recommendations in literature
review [24,41,43] and recommendations from other CubeSat teams
at informal discussions at conferences such as the International
Astronautical Conference or Small Satellite Conference. Consider-
ations were made to find processes that would not require too much
general resources for implementation and that would quickly dem-
onstrate benefits to the project team, to ensure that the teammembers
were willing to use tools.

2. Knowledge Transfer

During the first year of the HYPSO project, challenges with
information sharing occurred frequently, such as missed hardware
changes that influenced both software and hardware performance but
were not communicated clearly. Furthermore, the complexity of the
systemnecessitates better information accessibility and better knowl-
edge capture, which were two of the main objectives to fulfill for the
DE tools and processes chosen. The agile methodology in hardware
and software improved collaboration and information sharing both
by having the issues documented in GitHub, but also through the
common stand-up meetings held daily. In addition to the technical
benefits of using the GitHub workflow, having a common workflow
could also increase the feeling of team cohesiveness, and shared
understanding of how the fragments can work and should work
together through, for example, testing each other’s code. The
common stand-up meetings enabled a better understanding of how
hardware and testing worked for the software developers, and limi-
tations in, for example, physical interfaces, from the perspective of
hardware developers. On the other hand, the hardware developers got
a better understanding of how the system would be used operation-
ally, and could align their development and prototyping schedule to
accommodate for verification and validation activities.

3. User Experience

Because the DE strategy involved stand-up meetings, 3D-printed
hardware prototypes, andHIL test setups, teammembers acquired an
improved system understanding. Although it is difficult to prove an
improvement, discussions during review meetings have been less
about clarification and more about design enhancements and future
development. The first iteration of the agile methodology used a
physical kanban board, which was not adopted well by the team.
Introducing a GitHub kanban board reduced the effort needed to
separate software code development from the process of managing
the development. This is a clear advantage of using DE tools and
processes. Decision making has been improved for hardware by
employing 3D-printing to prototype and test design alternatives, thus
giving more data for making decisions. Automatic unit tests are run
on HIL setups before and after software updates are merged to the
master branch, providing higher level support for automation. How-
ever, all unit tests must be developed manually, so there is an effort
required there for the developers. The compilation of code generates

code documentation in Doxygen automatically. Doxygen can pro-
vide information about how functions are related, which further helps
information accessibility and sharing. Future work could be on
enablingmore automatic generation of unit tests in parallel with code
development.

4. Velocity and Agility

The HYPSO project is a part of a long-term strategy for establish-
ing capabilities for developing small satellites for scientific purposes
at NTNU [39]. There is thus a need for the development strategy to
have a capacity for reuse so that the different subsystems can be used
across a variety of platforms with some changes, and reused in new
satellites. Introducing the different HIL setups have increased the
capabilities for early Verification and Validation (V&V) which has
reduced time required to discover bugs. In addition, the increased
employment of 3D-printing technology (also a digital technology) in
prototyping and the development of ground support equipment
(GSE) have reduced the time for hardware development through
increased early V&V. Having 3D-printing technology in-house in
the laboratory hasmade it easier for the team to try out new designs or
satellite physical architectures. Furthermore, there is a higher level of
support for integration when combining 3D-printed prototypes of
hardware, mature HIL setups, and test software that can emulate
physical conditions such as lost packets on the radio communication
link. The GitHub workflow process introduced an improved consis-
tency, together with other standards. The shared repositories enabled
students to see how others write code and test, improving consistency
across the whole codebase, as well as functioning as a resource for
reuse in other platforms or future satellites.

5. Quality

The goal of introducing HIL setups and the GitHub workflow was
to strengthen testing and thus reduce defects and errors. However,
before the introduction of theHIL setups, theGithub flow also helped
with increased testing and integration into master branch from mid-
2019. There were no measures of effectiveness before the introduc-
tion of DE measures, and the discussion regarding effectiveness is
given in Sec. IV.B. Although not considered explicitly when choos-
ing GitHub, the issue tracking and discussion has enabled better
traceability of design choices. For example, if a bug or unwanted
behavior of code during testing resurfaces, it is possible to search for
keywords in GitHub and find similar bugs and investigate if similar
solutions can be used to mitigate the unwanted behavior. This can
reduce the time spent bug fixing for new developers who were not a
part of the project at the time of the original bug. An added benefit
from incorporating the design into DE tools such as GitHub was that
it required a conscious decision and discussions regarding architec-
ture and system design (related to both knowledge transfer and
quality), and there have been three instances of refactoring of code
systematically to improve the maintainability and modularity of the
codebase.

Fig. 9 Full SW sprint.
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B. Effectiveness of Using Agile Digital Engineering: Software and
Hardware

1. Tailoring of Scrum

The Scrum process was tailored to include issues related to thesis
work as well as product development tasks, as shown in Fig. 6. The
stand-ups have included both the hardware and the software team,
and people could join either physically or with their phone or
computer. Most team members have reported that stand-ups have
increased their understanding of the system and sharing of infor-
mation. Some students have reported that the stand-ups increased
in relevance as theywereworking on integration of subsystems, but
not so much when they were developing the prototype modules.
Another tailoring that was donewas to agree onwhich issueswould
be performed and ensure that each student had something to work
on. This was needed to accommodate thesis work. Unlike tradi-
tional Scrum processes, such as the one described by Garzaniti
et al. [37], the team did not agree on the functionality for eachMVP
to deliver at the end of each sprint. In hindsight, a better defined
MVP might have improved the results by having a shared goal
for each sprint, which can contribute to team cohesiveness and
commitment.

2. Scrum Performance

a. Software. The first sprint using GitHub kanban was held in
early 2019, and apart from the first sprint, all sprints were two
weeks long. The sprints started long after the software development
began, and the team had a good enough overview of functionality.
An overview of the software Scrum performance is given in Fig. 9.
The first couple of sprints had a high number of attempted points,
with a high “miss-factor” of points not done (February to June). This
can be attributed to the learning process and is not uncommon for
new Scrum teams. Team members mentioned that it was challeng-
ing to figure out how to score their tasks. The Scrum leader can
support this process by guiding the students, for example, by refer-
ring to previous work they have done and how long it took them to
complete. An ongoing challenge has been to have enough reviewers
to reduce the amount of points in the “Review-in-progress” column.
Because the workflow requires that someone else reviews the code,
there needs to be at least one other person with similar knowledge
and capabilities to be able to review the code. This may not always
be available when the students’ priorities are changing to consider
coursework and such.
In April 2019, it was decided that the software team leader would

be the Scrum leader moving forward, and also run the sprint meeting.
Furthermore, that sprint reviews should include an aspect of code
demonstration or amore rigorous documentation of how an issuewas
closed. The team has also discussed how to agree on a “definition of
done.” This definition has not been finalized yet, but there is agree-
ment that it should be related to the type of issue being solved. For
example, issues related to theses can be draft sections or chapters, and
code issues could be a bugfix, a functioning module, or function that
has resulted in a PR.

b. Hardware. The hardware team started using the agile framework
and sprint methodology at the end of Q2 2020. The payload design had
reached a high level of maturity by then, and most of the parts and
suppliers chosen. All satellite bus components had been procured. The
work that remained was focused on verification and validation activ-
ities, and coordination with external test facilities and the in-house
mechanical and optical laboratories. In addition, planning began for
the updates of design for HYPSO-2, the next CubeSat to be developed.
As shown in Fig. 10, there is a break during the summer holidays. The
performance has varied over the nine 2-week sprints that have been so
far. Many Scrum teams take a while to learn how to estimate points to
issues, and to estimate how much work can be done in one sprint.
Toward the end of the semester, the total points donematched the points
attempted better. This could be because the team became more accus-
tomed to the Scrum workflow, or because the deadline for delivery of
the flight model was getting closer and people felt committed to this
milestone. The blocked issues were typically due to external factors,
such as lack of access to testing or machining facilities, similar to the
findings in [37]. There have been continuous redesign and rework
activities. The stand-ups helped in coordinating the activities between
designers and the group leaders organizing the support facilities. Some
hardware teammembers stated that using Scrum helped them prioritize
tasks and not get “distracted” during the two-week period.
However, the greatest issueswere related to attendance and commit-

ments to sprints. It was challenging for the group leader tomotivate the
students when there were too few collaborative tasks. We found that a
two-week duration of sprints were suitable for the team because the
students were available to deliver increments in that time period.
Longer sprints could make it harder to motivate the students, and
shorter duration would make it difficult to deliver increments [37].
Themotivation could be improved by introducing stricterMVPs or by
spending more time planning the work up-front. TheMVPs could, for
example, specify new features to be included on the hardware proto-
types, iterated simulation results, increased performance, or lower
manufacturing cost. The MVPs could also be tangible, for example,
3D-printed prototypes and parts that can be validated by other team
members, or simulated assembly and incremental tests.

c. LessonsLearned. The team experienced challengeswith commit-
ment and attendance at stand-up meetings, especially with team
members who started during the COVID-19 lockdown (fall of
2020). There were fewer on-boarding and team building activities
than previous years, and little or no chance of face-to-face meetings.
Some students used the kanban board to organize their ownwork, but
did not join many of the stand-ups. Based on this experience, we see
that it is not sufficient to have good workflows and tools alone, but
that the social aspects matter as well. The teammembers need to be a
part of the culture, and people need to feel that they are a part of the
team, which is consistent with findings of Garzaniti et al. [37] and
Masood et al. [31]. The HYPSO team combined the sprint planning
and review meeting to reduce time spent in meetings [31], and
adjusted the sprint scoring and length to accommodate the overall
school schedules and workload [31,37].

Fig. 10 HW sprint in bar plot. There was a break during the summer holiday.
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3. Integration and Verification and Validation

The HIL setups have been instrumental in easing integration
between different systems, for software development, operations
development, and hardware development. For software develop-
ment, the HIL setups facilitate not only verification of software
changes before merging with the master branch, but also verification
that the changes work with the satellite bus via local engineering
model versions of subsystems or the FlatSat. There have been
HYPSO-initiated interface changes, and NanoAvionics (the satellite
bus provider)-initiated interface changes. These interface changes
have been to improve performance or add functionality. By having a
HIL FlatSat setup with physically distributed subsystems, engineers
in Vilnius could update the modules remotely and work concurrently
with HYPSO project members. Challenges with the HIL setups
included finding people to work on setting them up and developing
required functionality, such as automatic tests, andmaintaining them.
It was also challenging to find sufficiently interesting thesis topics for
working with HIL and testing activities.
The HYPSO project team can choosewhich subsystems they need

to locally with the payload (as shown in Fig. 7), and which subsys-
tems that can be located at the supplier premises. The subsystems
located at supplier premises can easily receive hardware upgrades
without the need for shipping modules back and forth. Additionally,
the distributed system still allows the supplier to log in to subsystems
located in the university to perform software upgrades, configuration
changes, or other fixes.
For operations development, the HYPSO operations’ developers

have been able to perform rehearsals to validate that the software
functions and performs as expected. This has been enabled by
allowing the operator to connect to the HIL LidSat setup using the
hypso-cli user interface (as shown in Fig. 5). Experiences from the
operators were critical for preparing the first official software release
for deployment on the flight model.

4. COVID-19

The COVID-19 pandemic caused the university to lock down on
March 12, 2020. Luckily for the team, the HIL setups had been
implemented in the end of February, which allowed for remote access
and testing of software on target hardware. In addition, the regular
stand-upmeetings had begun the year before and only required a shift
to full virtual meeting. The stand-ups were a bit longer than they had
been previously, because more people joined regularly and there was
a need to move some of the informal discussions that usually take
place in the physical laboratory to the stand-ups. Teammembers also
said that they appreciated the stand-up meetings because they were a
forum for social interaction. The issue tracking on GitHub for soft-
ware helped to follow-up the work and monitor the progress of the
project, and it was not affected by the lockdown. There was an
increase in commits (when a developer commits their code changes
and additions to the main repository) to the main software reposito-
ries around the time of the lockdown, and the high frequency per-
sisted until the end of semester, as shown in Fig. 11.

However, no hardware integration and testing could be performed
during the lockdown, because the teammemberswere not allowed on
campus or to travel to external test facilities. This created a severe
schedule delay to the project. The hardware team spent time prepar-
ing design documentation and refining test plans until the lockdown
restrictions eased.

C. Educational Aspects

In the context of DE, the HYPSO project organization described in
this paper have many similarities with the projects described by
Berthoud et al. [12]. The university CubeSat project format is an
inherently interdisciplinary project that prepares students for future
work, even if it may be in different industries. Additionally, the use of
HIL setups, a strict GitHub development flow, and agile practices in
software and hardware development provide the students with a
larger skill set for future employers. The students gain practical
experience with using DE methods and tools, while still delivering
the required coursework and thesis work. Although these skills may
be gained through capstone courses as well, having an active cus-
tomer with strict deadlines and objectives in addition to educating
students can motivate teams to work even harder with delivering
results [32]. The customer for the HYPSO project was the group of
scientists who needed the data from the CubeSat, and the deadline
was set by the commercial launch date. However, managing CubeSat
projects with agile practices requires coordination and training, and
should not be underestimated [30–32].
Although we have not done a systematic study of the transfer-

ability of skills learned during the HYPSO project, one student
mentioned the following:
I have noticed that in my job, where they use Scrumwith Kanban

on a digital platform, I at once felt at home and prepared for how to
domywork. And I also felt that I could contribute fast. Themeeting
structure and documentation (templates, as-built documents, inter-
nal and external design reviews) were similar to howwe did it in the
HYPSO project, which made it easier for me to see the value of
what I had learned and realized the relevance of the HYPSO
practices. : : : I felt I was prepared to start a job because I know
how the workday is structured and how to organize my work.
Some of the graduated students have joined the team as Ph.D.

candidates and taken on leadership roles. The rest of the graduated
students have joined companies in various industries, and some still
join HYPSO design reviews or contribute to the code repository.

D. Future Satellite Development

The HYPSO team has started the development of their second
CubeSat that will have an upgraded version of the hyperspectral
payload, increased processing capabilities, and a software defined
radio (SDR) [44]. Based on the experiences fromHYPSO-1, the team
plans to continue the agile work methodology for both hardware and
software, and increase the importance of team building and team
cohesiveness. They are also considering introducing MVPs and a

Fig. 11 The two main software repositories commit frequencies.
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clearer “definition of done” [31,45], which could increase the sprint
performance.
The team has introduced a cloud-based digital tool for managing

requirements, system budgets, analysis, verification planning, and
project planning. Previously, this effort was managed through the
systems engineer, but now, the team can collaborate real-time from
different sites on the same set of requirements. These updates also
feed automatically into system budgets and the product breakdown
structure. The team members can create discussions and flag com-
ponents or requirements, and assign tasks to each other. This is a part
of the “central, shared, digital information system” shown in Fig. 8.

V. Conclusions

DE is needed for managing the development of complex systems.
This requires a conscious effort throughout the organization, and the
strategy must be tailored to the specific needs and constraints. There
is also a need for engineers who are trained to use DE approaches in
their work, in all life-cycle phases of a project. Academic CubeSat
projects provide an arena to training future engineers by collaborat-
ing in interdisciplinary system development. The students gain both
technical and nontechnical professional skills. For academicCubeSat
projects, the needs for a DE strategy are often similar to the industrial
setting, but the context and constraints are quite different.
This paper has described the case of an academic CubeSat project

in Norway, where they are developing a scientific 6U satellite and
ground segment. Because of the challenges with knowledge sharing,
unclear decision making, lack of coordinated planning, and poor
code quality and documentation, the project organization introduced
some measures that include DE tools and methods. This paper has
outlined the project development life cycle and highlighted how agile
practices supported by a digital kanban, a GitHubworkflow, andHIL
setups have been essential in managing the development of the
complex CubeSat. In addition, the paper has discussed in which
ways the DE strategy chosen contributed to verification and valida-
tion activities, integration of systems, knowledge sharing, and how
the tools and methods supported development even during the
COVID-19 lockdown. However, the tools and processes alone are
not sufficient for adoption of the DE work environment. People need
to be encouraged to use them, and social aspects such as team
cohesiveness and commitment are important. Throughout this proc-
ess the projectmanager has used a participatory approach inwhich all
team members could influence the practices and processes.
The DE strategy adopted by the HYPSO team is a low-cost, low-

effort approach using readily available tools and methods. Some of
the methods, such as agile practices and software repositories, have
been used in other CubeSat projects. There are valuable lessons to be
learned between different academic teams and between industry and
academia on how to best approach and implement DE in the organi-
zation. Future work will look at including more MBSE tools and
incorporating them with the product life cycle proposed, to increase
the common understanding of the system and support knowledge
management. Lastly, to combat the hurdles that using target hardware
for testing can cause, it is common to simulate the hardware
responses. The caveat will always be that the addition of mocking
software as well as the addition of unit tests will be prone to the same
codingmistakes as any type of software development. The additional
overhead of producing and maintaining a mocking library can take
away resources from code development thatwould otherwise provide
the needed functionality or enhance it. The addition of unit tests
should be added when possible and could help uncover undesirable
side effects of any proposed changes to the code base.
Future studies could look at 1) how the graduated students have

experienced transferability of skills and practices gained during the
HYPSO project; 2) how other university projects use DE and how the
students experience it there; and 3) opportunities for cooperation
between the CubeSat project and the wider university context, for
example, by introducing aspects with DE as a part of the student
curriculum to prepare for joining cross-disciplinary projects.
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