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Abstract
The HYPSO-1 6U CubeSat is equipped with a hyperspectral imager and has acquired and downlinked over 2000

hyperspectral images during its first 2.5 years on orbit. The payload can acquire many images per day, but the satellite
downlink and available ground stations imposes a capacity limit of about 5-6 captures per day. Since the launch, the
team has operated HYPSO-1 and continued updating it with functionality, including an onboard classification algorithm
currently applied to the acquired images. The onboard classification is a Support Vector Machine (SVM) utilising a
binary decision tree that is labeling pixels into 11 different classes, including clouds, land, and water. Until now, these
labels have been exclusively analysed after downlinking to a ground station. In this research, we perform onboard
analysis of the labeled images to generate more knowledge onboard the satellite. The knowledge gained is intended to
be used to prioritise the downlink of captures. The main idea is to increase the satellite’s coverage by acquiring more
images than the satellite can downlink, and utilise onboard classification to filter out acquisitions of poor quality or
relevance. We explore the viability of this idea by extending the onboard classification model to output the percentage
of pixels per class, and showing the necessary architectural changes to the scheduling software and onboard software
to implement the functionality. The result shows that the concept is viable but requires improving the classifier to get
reliable classification.

Acronyms/Abbreviations
Support Vector Machine (SVM)
Convolutional Neural Network (CNN)
Onboard Processing Unit (OPU)

1. Introduction
CubeSats have been used in educational satellite mis-

sions due to their lower deployment cost compared to tra-
ditional, monolithic satellites, while still proving valuable
in targeted missions [1]. Similar to the Copernicus pro-
gram’s expansion missions, CubeSats can also play a key
complementary role in supporting large observation pro-
grams by filling unaddressed niches [1]. However, their
small size limits critical resources like power and sensor
sizes, leading to a reduced capacity compared to conven-
tional satellites. Such constraints have been addressed
by utilising multiple small satellites in large constella-
tions, such as Planet Labs’ constellation [2]. With a large
amount of satellites, they can provide global coverage and
are better equipped for low-latency coverage of specific
target areas. However, such coverage cannot be provided
with a single CubeSat.

An example of educational satellite missions is
HYPSO (Hyperspectral Small Satellite for Ocean Ob-
servation). The first CubeSat, HYPSO-1, was launched
on the 13th of January 2022. The satellite is equipped
with a hyperspectral imager and has, since its launch,
successfully acquired and fully downlinked over 2000
hyperspectral cubes, with the main mission being fo-
cused on marine observations, especially harmful algae
blooms. The HYPSO-1 satellite can downlink around
5-6 captures per day [3], but accounting for energy and
onboard storage capacity, it can acquire significantly
more captures daily. The main limitation is onboard- and
downlink data transfer rates. In Fig. 1, we illustrate the
image downlink procedure. The payload first acquires the
data, which is then transferred - referred to as buffering -
to the payload controller for temporary storage before it
is downlinked to the ground station via the S-band radio.
The payload controller is used as temporary storage
since it has a much faster communication interface to the
S-band radio than the payload has to the S-band radio.
The payload only has a CAN bus interface to the S-Band
radio, whilst the payload controller has a higher data
rate UART interface. As seen in Fig. 1, the CAN bus
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has a significantly lower throughput than the S-band and
would become the limiting factor if images were directly
downlinked from the payload.

Fig. 1. Procedure for performing imaging downlink.

Due to the satellite’s limited downlink capacity, the
coverage is also limited. However, its strength lies in its
agility, meaning its ability to control its attitude to acquire
images off-nadir. The satellite performs a small selection
of targeted captures per day to monitor specific areas, with
most images being acquired pointing sideways off-nadir.
The areas to image are finally selected by an in-house au-
tomated system from a list of desired targets as described
in [4]. There is a possibility of human intervention if de-
sired. When scheduling the imaging acquisitions, cloud
predictions from the Norwegian Meteorological Institute
are used [5], and planning is performed at least three times
per week to have up-to-date weather reports. However, not
all captures are successful. Pointing anomalies, inaccurate
cloud predictions, space weather justifying powering off
non-essential subsystems as a precaution, unexpected re-
boots or downlink errors are some causes of failures. With

data throughput as a main constraint, the satellite is not as
suitable for detecting new phenomena as it is for monitor-
ing existing phenomena since the amount of daily images
is limited. Thus, the capacity of the satellite is better used
for monitoring the development of known algae blooms.
However, since our imaging capability is greater than our
downlink capability, we want to increase our daily image
acquisitions and utilise onboard processing to only down-
link the data of highest relevance and quality. In this paper,
we present a novel approach to enhance our operations by
using onboard classification to guide our imaging down-
link and discuss what architectural changes to our payload
are required to implement it.

2. Cloud Detection & Onboard Classification in the
HYPSO project
Onboard cloud detection and thus download priori-

tisation has become an objective for multiple optical
satellite owners and operators in recent years, such as in
ESA’s Copernicus Hyperspectral Imaging Mission for
the Environment (CHIME), Φ-sat-1, Φ-sat-2 missions
as well as commercial actors such as Kuva Space [6–9].
These missions aim to make cloud masks onboard and
use the new knowledge to apply lossy compression to the
cloudy pixels to spare downlink resources. From [8], it is
stated that clouds cover >54% of the Earth’s land surface
and 68% of the oceans. Performing lossy compression of
pixels affected by clouds has the potential to significantly
reduce resources misused on downlinking unusable data.

Within the HYPSO mission, we started working to-
wards onboard processing to guide downlink at an early
stage of the orbital lifetime of HYPSO-1. In [10], Birke-
land et al. explored the idea of utilising the compres-
sion ratio of the hyperspectral images onboard the satel-
lite to get some information about the general quality of
the capture. It was never taken into practical use, but
we have since developed classification models. One is
a Deep Learning Convolutional Neural Network (CNN)
called 1D-Justo-LiuNet, which was trained in [11], and the
other model successfully run in-orbit is a Machine Learn-
ing Support Vector Machine (SVM) utilising a binary de-
cision tree developed by Røysland in [12, 13]. On the one
hand, the CNN classifies each pixel in the hyperspectral
images into one of the three classes land, water, clouds.
Model inference runs on raw data without calibration or
correction to minimise computational complexity, as pre-
vious results show comparable results between inference
on raw data and radiance [11]. On the other hand, the
SVM classifies the images into the 11 different classes wa-
ter, strange water, light forest, dark forest, urban, rock,
ice, sand, thick clouds, thin clouds, and shadows. The
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SVM model performs radiometric calibration, described
in [12, 13], before running classification inference. The
class strange water is essentially a category consisting of
water with some distortion, e.g., from sediments or algae.
Although the CNN offers significantly higher accuracy,
the SVM, simpler and with shorter inference time, clas-
sifies each pixel into one of many more categories, yet at
the cost of reduced accuracy. An example image is shown
in Fig. 2. The image marked B is the result of the SVM
and shows it has misclassified a large portion of the land
as the label sand when it should probably be dark forest.

The decoded classified images are henceforth called
labeled images. In the decoded labeled image by the
CNN, orange denotes land, gray indicates clouds, and
blue shows water. For the classified image by the SVM,
the legend of the decoded SVM is shown in Fig. 3 and is
obtained from [13].

The satellite’s hyperspectral imager has a spatial res-
olution of approximately 120 x 630 m/pixel, dependent
on the acquisition angles, mode and camera setting [14,
15], and typically acquires hyperspectral cubes with 598
x 1092 pixels in the spatial domain. Thus, the coverage
within a single capture is in the region of tens of thousands
of square kilometres, dependent on the off-nadir angle of
the acquisition.

Compared to the missions with the goal of running
onboard cloud detection mentioned earlier, the HYPSO
project has a slightly different problem statement. We
have a satellite capable of capturing many more images
than we can downlink per day. The images we acquire are
targeted to cover a specific area and typically cover a much
larger region than the area of interest. This does not mean
that the additional pixels are not of interest, but the main
area of interest is often contained within a small portion
of the full image acquisition. A capture can be highly suc-
cessful even though, for example, 80% of the capture is
affected by clouds, or a total failure even if 5% is affected
by clouds, depending on whether the clouds cover the spe-
cific target area or not. Therefore, we want to utilise on-
board classification to better understand whether our spe-
cific imaging target was successfully captured.

3. Selection of classification model and approach
To enhance our satellite operations, we can choose

different approaches. As described in Section 2, we
want to determine if we got successful imaging of the
specific target area, not necessarily the entire capture area.

Fig. 2. Comparison of the classification models. The im-
age was acquired by the HYPSO-1 satellite on the 18 th
of September 2024 and is of Lake Erie on the border be-
tween the USA and Canada. The picture marked A is an
RGB composite of the hyperspectral cube generated on
ground. The picture marked B is the labeled image us-
ing the SVM run in-orbit. The picture marked C is the
labeled image using the CNN run on ground. Figure C
is decoded using the software published by Justo et al.
in [11].
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Fig. 3. Color-mapping of the decoded SVM classes. Fig-
ure obtained from [13]

3.1 Onboard georeferencing
One of the approaches considered was performing

onboard direct- and indirect georeferencing to find the
target area within the acquired image. This is further
described in Chiatante et al. in [16], utilizing the CNN
from [11] to make cloud, land, and water masks as
input to the indirect georeferencing algorithm. It would
require maps of the imaged area to be uplinked to the
onboard payload computer before imaging. However, the
georeferencing cannot be too computationally complex
for it to be viable in nominal operations. This approach
was disregarded at the current point in time as it was
deemed too complex within the scope of this paper. It
could become a viable option in the future, but it requires
further research.

3.2 Cloud percentage
Another approach could be to utilise build upon the

previous idea described by Birkeland et al. in [3] of utilis-
ing the compression ratio of the hyperspectral images to
estimate the cloud cover. One way of improving it is using
a histogram plot of intensity values, which could output
the percentage of overexposed pixels, assuming that those
are due to clouds. As proposed in [11], the same could
be done by using the CNN by running it onboard the
satellite. Additional information that would be interesting
to extract from a classification method would be to check
if there is any coastline in the image, which is necessary
for georeferencing to be performed on the ground in
post-processing. The histogram plot could possibly also
be used for mapping coastlines by comparing dark ocean
pixels close to brighter land pixels. Still, the logic and
testing/training required to set this up essentially means

making a new coastline classification model, which is
unnecessary in the scope of this work. The use of cloud
percentage could be used as a prioritisation between two
target areas where one has significantly more clouds than
another; a concept described in [11]. However, it would
not yield any information about whether the clouds are
over the specific target area or not.

3.3 Target biomes
The approach selected in this paper was to use the

SVM classification model. It is not the most accurate at
its current stage, but it labels the captures into a large set
of different classes and runs in less than ten seconds on
the payload [13]. The goal was to mark the areas with
the biome we are interested in and set a threshold for the
percentage of pixels of that biome for the capture to be
considered a success. A biome is here defined as one or
more of the existing classes in the SVM model. In a more
general sense, it is the desired classification classes for a
specific satellite mission. This approach does not give any
exact result on whether or not the particular target area
itself was cloudless or if the correct place was imaged.
Still, it provides more information than only setting all the
land masses as the label land. If a large pointing error
happens during imaging, the labels will most likely not
match the target biome. In the HYPSO mission - being fo-
cused on marine observations, specifically harmful algal
blooms - the biome strange water could be utilised to en-
hance HYPSO-1’s ability to detect new algal blooms. Ac-
counting for its downlink limitations, the satellite can only
acquire images of a small set of target areas daily, where
most of the capacity is allocated for monitoring known al-
gal blooms. Thus, the remaining capacity to detect new
algal blooms is scarce. However, by utilising onboard clas-
sification to guide the image downlink, the satellite could
image a larger variety of water bodies. The threshold of
the class strange water could be set slightly higher than the
nominal average within that area, thus triggering an image
downlink only if the payload notices signs that could mean
the start of a new algal bloom. The biome strange water
could also be utilised to detect and monitor other phenom-
ena where the water’s spectral response is affected by, e.g.,
sediments, such as meltwater or flooding.

4. Software architecture changes - onboard and
scheduling
Currently, the planning and scheduling of captures,

buffering sequencing to the payload controller, and down-
link to the ground are defined in software on the ground.
The payload comprises the hyperspectral imager and a
device for controlling the imager, called the Onboard
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Processing Unit (OPU). At the time of writing, all the
scheduled captures are queued for downlinking since
the scheduling software is run on the ground with no
knowledge of the capture quality. The payload controller
- being used for temporary storage of images before being
downlinked to the ground - can only store two captures at
a time. The scheduling software estimates at what time
these captures are expected to be finished downlinking.
It then schedules a new image to be buffered from the
payload to the payload controller once the previous
capture is estimated to be completely downlinked, as
shown in Fig. 4.

Fig. 4. Example of a downlink schedule estimated by the
scheduling software. Image 3 cannot be buffered to the
payload controller until image 1 is fully downlinked.

The concept of guiding image downlink based on
onboard classification is not seen as the novelty in this
work as it has been proposed earlier, e.g., in [17], the
novelty is the implementation on the HYPSO-1 satellite
using the SVM. The goal is for the payload to select
which capture to buffer based on the classification output
and user-set thresholds. However, we cannot totally
disregard all captures not selected for downlink, since the
classification output could be inaccurate, their content
could hide underlying issues with the satellite. Instead,
it would be better to use a queuing system such that
if there is downtime with no high-priority captures to
downlink, captures of a lower priority will be downlinked.
As a minimum, all captures should downlink the labels

from the SVM to get a preview of the capture. The
information can be used to determine what caused the
capture to fail the stated threshold, whether it was a
pointing anomaly, payload issue, or inaccurate cloud or
biome prediction. Fig. 5 shows how scheduling could be
set up with the implementation of a prioritised buffering
queue. The satellite would image more than it is capable
of downlinking, and then only downlink the captures that
are predicted to be the most likely to contain specific
targets of interest.

Fig. 5. Example of how scheduling would be set up with
the addition of a prioritised buffering queue.

Specific thresholds for each capture target would have
to be set as the criteria for the capture to be put into the
prioritised buffering queue. These thresholds would be
put into the scripts made by the scheduling software on
the ground and given to the payload through the scripts.
The easiest way for the payload to check if the thresholds
are met would be to output a text file containing the per-
centages of each class within the picture as part of the clas-
sification process to get a quantified measure of what the
image contains. The thresholds should be a certain per-
centage of a specific class or a combination of classes. The
OPU would then check if the specified classes’ thresholds
are met and put the capture into the prioritised buffering
queue.

5. Classification analysis
We made a script to decode the labeled image and

record the percentages of pixels per class. To test whether
the proposed procedure was viable, we ran this during
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normal operations for a few months during the summer
of 2024 to get multiple sample images from various
scenes and compared the pixel percentages on the ground
afterwards. Fig. 6, Fig. 7, and Fig. 8 show the results of
two captures at three of the locations we had multiple
captures from within the period. All classes where both
captures had less than 0.2% of pixels within the class
were removed to make the plots more readable. Note that
the three figures have different amounts of classes plotted
in the tables due to this.

Fig. 6 shows a comparison of two captures acquired
of Lake Erie. By looking at the percentage of pixels
for the different classes, one of the most significant
discrepancies is that Erie1 is denoted to have the largest
amount of strange water of the two images. Looking at
the RGB composite of the hyperspectral cube and the
labeled image, we can clearly see that this is incorrect.
The land pixels were incorrectly labeled as strange water
when they probably should have been labeled as dark
forest pixels. This is an example of when the downlink
prioritisation would not work as intended if the target
biome was strange water.

Fig. 7 shows two captures of Checleset. Both have
a large amount of water and strange water, but we can
see a possible misclassification in the water to the right
of Vancouver Island. In the RGB composites, it looks
like there are some green patterns that could be algae,
but it has not been labeled as strange water. Checleset1
has more strange water, dark forest and urban than
Checleset2. Even though it does not confirm there are
coastlines in the capture, it can be interpreted as the image
is more likely to contain coastlines, which is necessary to
perform indirect georeferencing during post-processing
on the ground. For these captures, this main target of
interest was monitoring algae blooms in a small area
within the captured region, but surrounding areas were
considered additional value. For other captures, if the
target biome were monitoring of the ocean, meltwater
from the mountains, or the forest, both captures would
show a high likelihood of being a relevant image even
though they also contain a notable cloud cover percentage.

Fig. 8 shows two images of slightly different locations
within the Caspian Sea. In this image, we can again see
some classification errors, most notably that Caspiansea1
being labeled to contain dark forest in the upper-middle
part of the image, and Caspiansea2 being labeled to have
sand to the right of the peninsula. Additionally, in Caspi-
ansea2, some of the sand was overexposed, thus leading
to being misclassified as thick clouds. Since the main

Fig. 6. Comparison of two labeled images of Lake Erie -
represented by the RGB composite of the hyperspectral
cube and the decoded labels - and the percentage of pix-
els within the different classes. Note that Erie1 has been
incorrectly labeled as it shows a high amount of strange
water that is not seen in the RGB composite of the im-
age. Legend for the decoded labeled image is shown on
the bottom right, acquired from [13].

objective of the HYPSO mission is to monitor the water
quality, and both captures show a large percentage of
strange water both would be considered good candidates
for downlink.

6. Future Outlook
Section 5 presented results from images of the same

scenes to compare pictures within the same area. The
classification model proved to detect differences between
captures from different times. The classification results
are somewhat inaccurate, but the tests show that the
concept can work with a good classification model.
Going forward, two main areas for improvement are
necessary: the accuracy of the classification method and
class thresholds for the imaging targets.

It is necessary to retrain the classifier to be more
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Fig. 7. Comparison of two images captured of Checleset -
represented by the RGB composite of the hyperspectral
cube and the decoded labels - and the percentage of pix-
els within the different classes. Legend for the decoded
labeled image is shown on the bottom right, acquired
from [13].

accurate and change the classes to correspond better with
the target biomes of imaging locations. Making new,
niche classes such as volcano or wildfire is possible. Such
classes could be useful in specific imaging scenarios,
but adding a large number of classes can make the
output more unreliable because it is more complex to
differentiate between the distinct features of the classes
and the potential overlap between similar classes. Having
sufficient training data could also become problematic.
Instead, niche imaging targets could be a better use-case
for target detection methods for hyperspectral images,
such as the ones described in [18]. For the HYPSO
mission, having classes to separate strange water into
more specific subclasses, such as Chlorophyll-A, could
be the most beneficial, and mapping coastlines would be
desirable. The classification performance could become
more accurate by implementing onboard atmospheric
correction and retraining the model on the corrected
datasets, but that remains as future work.

Fig. 8. Comparison of two images captured of different lo-
cations within the Caspian sea - represented by the RGB
composite of the hyperspectral cube and decoded labels
- and the percentage of pixels within the different classes.
Legend for the decoded labeled image is shown on the
bottom right, acquired from [13].

Each imaging target needs certain thresholds to be
considered good enough for downlink. These thresholds
need to be defined after the classification model is
improved due to it being too inaccurate to reliably trust
the current version of it.

Once these upgrades are in place, the HYPSO-1
satellite - or other satellites with the same limitations
and specifications - could be tasked with imaging a wide
variety of waterbodies each day but only downlinking
the ones that show any presence of algal blooms, thus
increasing the satellite’s coverage.

Looking further ahead, the satellite still needs to run
onboard georeferencing to detect if it successfully imaged
the exact targeted region. How to implement it and what
tools to use requires more research and remains as future
work.

7. Conclusion
We have presented the problem of CubeSats’ limited

coverage through the specific, quantified limiting factors
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of the HYPSO-1 satellite. We showed our approach to en-
hance operations efficiency by utilising onboard classifica-
tion to detect whether or not an acquired image captured
the intended target biome. We presented the architectural
software changes necessary to the HYPSO-1 payload, and
planning and scheduling software to implement this capa-
bility, and performed testing by running onboard classifi-
cation and denoting the percentage of pixels per class. The
approach is deemed feasible, but requires further work in
improving the classification model to make it more accu-
rate, and in defining suitable thresholds for each imaging
target for when the capture should be downlinked. With
these changes, the desired outcome for the satellite is to
perform more daily image acquisitions than it currently is
possible to downlink. Furthermore, one can let the pay-
load itself decide which acquisitions to downlink based
on the classification output and user-set thresholds. Thus,
we can increase its coverage without downlinking more
captures.
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