75" International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright © 2024 by the International Astronautical Federation (IAF). All rights reserved.
TAC-24-B.4.6B.8
Reconfiguration of FPGA during operation of small satellite for flexible hyperspectral data compression
Simen Lgcka Eine,**, Dennis D. Langer®, Roger Birkeland and Milica Orlandic*
3 Department of Electronic Systems (IES), Norwegian University of Science and Technology (NTNU), O.S. Bragstads Plass 2B, 7034
Trondheim, Norway, einesimen@ gmail.com
b Department of Marine technology (IMT), NTNU, dennis.d.langer @ntnu.no

¢ [ES, NTNU,
* Corresponding author

Abstract

Reconfigurable hardware can be used to increase processing efficiency in an environment limited by size, time
and power, such as in small satellites. In this paper we demonstrate how the reconfiguration of Field Programmable
Gate Arrays (FPGAs) can be used to utilize the same hardware for different programmable architectures, increas-
ing flexibility and efficiency on an onboard processing system that has limited resources. The small satellite
HYPSO-1 (HYPerspetral Smallsat for Ocean observation) is used as a case study, for which FPGA reconfiguration dur-
ing satellite operations is possible. HYPSO-1 is a 6U CubeSat with a hyperspectral camera as its payload, which features
a hardware accelerator for hyperspectral data cube compression based on CCSDS123. The hardware accelerator can
compress a hyperspectral data cube of nominal dimensions in less than a second of processing time. In this paper, we
present 1) a method for testing and verifying new FPGA designs before permanent integration into satellite operation,
and 2) adding support for FPGA compression of a multitude of cube dimensions, as a static hardware implementation
can compress only a specific cube dimension. On-board reconfiguration of the FPGA is performed automatically de-
pending on the specified cube dimensions in a capture command. The FPGA accelerated compression decreases the
compression time for hyperspectral data cubes from 5-6 minutes to less than a second, as the software implementation
of CCSDS123 compression can now be omitted for non-nominal cube dimensions. The time saved per capture reduces
energy usage and time until the hyperspectral camera instrument can collect data again. These factors impact the total
imaging capacity of the system and are especially useful when scheduling the imaging of geographically close targets,
that are to be imaged during the same satellite pass.

Keywords: Cubesat, hyperspectral remote sensing, compression, FPGA, reconfiguration.

1. Introduction 1 and HYPSO-2 contains a Zynq System on Chip (SoC)
from AMD Xilinx. The SoC has an ARM processor that
runs Linux and uses custom software to interact with the
rest of the satellite. A Kintex-7 FPGA is available on the
SoC, and the software interacts with this FPGA via mem-

ory [3].

FPGAs are programmable logic devices, often used to
run optimized algorithms faster and more efficiently than
CPUs and GPUs. These devices are now often used in
small satellite systems, such as CubeSats, as processing
tasks for satellite data are strictly defined and therefore
can often be optimized for deployment on FPGAs [|1]. By
using the reconfiguration of FPGAs to run different algo-
rithms, the devices become more flexible and can speed

HYPSO-1 can acquire orders of magnitude more data
than is possible to downlink, using its 1 Mbit/s S-band

up multiple processes or applications significantly.

The HYPSO mission was developed at the Norwegian
University of Science and Technology (NTNU) and the
mission aims to research and observe the ocean by captur-
ing hyperspectral image data from a constellation of small
satellites. The hyperspectral data can e.g. be used to detect
Harmful Algal Blooms or for water quality monitoring.
The HYPSO-1 CubeSat is the first satellite in the HYPSO
constellation, and it was launched in January 2022 [2].
HYPSO-2 was launched in August 2024. The OPU (On-
board Processing Unit) for the payload on both HYPSO-

[IAC-24-B.4.6B.8

radio. Hence, HYPSO-1 does not observe continuously,
but divides data acquisition up into small packets of data
from specific targets that are called hyperspectral data
cubes or captures. The hyperspectral data cubes are com-
pressed to reduce the needed downlink time. The loss-
less CCSDS123 issue 1 hyperspectral image data compres-
sion algorithm [4] is used, and it can reduce the size of
a typical capture on HYPSO-1 from 153 MB to 80 MB
or less [5]. This algorithm is implemented both in soft-
ware and on the FPGA, typically taking about 398 s on
the CPU and 186 ms on the FPGA. [3]. The hyperspec-
tral data cube dimensions supported for compression in

Page 1 OI‘E

75" International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright © 2024 by the International Astronautical Federation (IAF). All rights reserved.

the FPGA implementation are fixed to a single configu-
ration, called the nominal dimensions. The more flexible
software algorithm that runs on CPU is used to compress
captures of any non-nominal dimension. Software updates
post-launch are used to enable compression in the FPGA
of dimensions other than the nominal dimensions using
dynamic FPGA reconfiguration, as well as enabling the
support to implement and accelerate more algorithms than
CCSDS123 issue 1 compression.

The contribution of this paper is to showcase how on-
demand reprogramming of FPGA hardware during satel-
lite operation can be beneficial in certain situations, specif-
ically making the use of the FPGA for compression of
more capture configurations. We present results from per-
forming FPGA reconfiguration on-board the HYPSO-1
satellite that showcases the benefit this brings.

The rest of the paper is outlined as follows.: Section B
discusses the proposed design and necessary development
for support of FPGA reconfiguration during satellite op-
erations on the HYPSO satellites. Section [§ presents and
discusses the results of the implementation. Section f con-
cludes the discussion of the results.

2. Implementation

The master thesis [6] covers the development and
necessary implementation for FPGA reconfiguration on
HYPSO-1 in detail. The following section provides an
overview of the motivation and design choices relevant
when reconfiguring during operation.

2.1 Motivation

On-board FPGA reconfiguration has the potential to
accelerate a wide variety of algorithms and enable oper-
ational flexibility. These algorithms can serve different
purposes from configurable compression to on-board op-
erational autonomy and decision making. The process of
developing an FPGA implementation of such an algorithm
and integrating it into the satellite operational procedures
is challenging. For this reason, a development and testing
workflow has been defined that focuses on simplicity and
modularity.

The intended flow for testing new designs on HYPSO-
1 is illustrated in Figure ﬂ] It is a collaboration between
FPGA developers and satellite operators to make sure a
design works as expected on the platform before it is inte-
grated into day-to-day satellite operations.

The flow consists of a developer who creates an FPGA
design and integrates it into the satellite project. The Flat-
Sat is a functional replica of the satellite, set up at a table.
If the design works on target hardware, a satellite operator
collaborates with the developer to create a test and run this

[IAC-24-B.4.6B.8

Testin
orbit

1
I
1
|
Test on
FlatSat

Create test
procedure

Fig. 1. Suggested flow for testing new FPGA designs

\

Integrate O
e

N Developer
/ \
! \
| . \
\ Design does
, notwork

-

Operator

\

Design
works

Test on
target
hardware

on the FlatSat. If the test is successful, the test can be run
on the satellite, and the results evaluated by the developer.

2.2 Reconfiguration methods

Partial dynamic reconfiguration and full static recon-
figuration are different methods used to reprogram an
FPGA. Partial reconfiguration only rewrites a specified
partition on the FPGA and can be done while the rest of
the device is still operating. On the other hand, full recon-
figuration rewrites the whole FPGA, and designs on the
device can not be used during the reconfiguration process.
Partial reconfiguration is faster and allows for smaller con-
figuration files, as less of the configuration data is rewrit-
ten compared to full reconfiguration [[7]. However, partial
reconfiguration requires more effort to set up, and opera-
tors must be aware of what designs exist outside the partial
configuration.

The FPGA used on the OPU supports both partial and
full reconfiguration, but full static reconfiguration was
chosen as the default method to make the development
process and satellite operation simpler compared to par-
tial reconfiguration.

The OPU on HYPSO-1 runs an embedded Linux sys-
tem, created with the PetaLinux tools provided by AMD
Xilinx. By default, a static FPGA configuration is embed-
ded into the operating system image on the OPU, and an
operating system image update is necessary to change the
default configuration. To facilitate for reconfiguration of
the FPGA during runtime, the static configuration is sep-
arated from the rest of the operating system and loaded
during system startup. This also requires the software in-
teracting with the FPGA to take into account the possibil-
ity that a design may not be present.

Page 2 OI‘E

75" International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright © 2024 by the International Astronautical Federation (IAF). All rights reserved.

Compress image

compression and capture Z::;Ctzmg B EEN Yes
flag set dimension mismatch
Load matching
No bitstream
Software Hardware fr?rfr:wl?t;:sion l
compression compression P
Hardware
compression

®

Fig. 2. Flow diagram of hardware compression reconfigu-
ration

2.3 Implementation
pipeline

The reconfiguration is integrated into satellite opera-
tions by expanding the set of commands received and han-
dled by the OPU. The commands provide satellite oper-
ators with a simple interface for operations such as up-
loading test files, listing available files, reconfiguring the
FPGA, and also checking the currently loaded design. The
FPGA is reconfigured via an AMD Xilinx application
called fpgautil, which in turn uses the Linux FPGA
Manager backend.

Open Firmware Devicetree is a data structure and lan-
guage used to describe hardware. Devicetree files can be
used to describe the hardware configuration in Linux sys-
tems, and even change it during runtime [§]. It is possi-
ble to load devicetree overlays when the FPGA is recon-
figured, describing the new design to the operating sys-
tem. This is supported and recommended when reconfig-
uring the FPGA on HYPSO-1, as it makes it easier for
software to interact with the FPGA designs via Linux de-
vice drivers. An example of this is the Linux Userspace
10 driver, which can be used with memory-mapped inter-
faces such as Advanced eXtensible Interface (AXI).

into operations and processing

2.4 Usecases

A relevant use case for the FPGA reconfiguration fea-
ture is to automatically load a specific FPGA design as part
of a processing pipeline. As the non-flexible FPGA algo-
rithm for hyperspectral image compression on HYPSO-1
is much faster than its flexible software equivalent, this is
arelevant case for automatic reconfiguration of the FPGA.
Automatic reconfiguration is integrated into the code re-
sponsible for hyperspectral image compression, follow-
ing the flow described in Figure . The software checks
if hardware compression should be used, and if this is

[IAC-24-B.4.6B.8

Category XxYxZ
Nominal 684 x 956 x 120
No binning 684 x 106 x 1080

1216 x 33 x 1936
1092 x 598 x 120 or
1216 x 537 x 120

Full sensor

Wider spatial

Table 1. Categories of dimensions, from [3]

the case it checks the devicetree for an existing hardware
compression algorithm with the correct dimensions. If
this does not exist in the current devicetree, the software
searches for a bitstream that matches the required dimen-
sions and loads this one to the FPGA before running
the hardware compression. If no acceptable bitstream
is found, the software compression is used. Reconfigur-
ing the FPGA before compression of captures with non-
standard dimensions utilizes the faster hardware while
keeping the compression flexible.

3. Results and Discussion

FPGA reconfiguration during operation was imple-
mented as part of [6], and since 9 March, 2024, it has
been used on the HYPSO-1 satellite. An anomaly detec-
tion algorithm [9] and a hyperspectral image compression
algorithm [[1(] were tested on HYPSO-1 with FPGA re-
configuration.

The HYPSO-1 satellite operators use different cate-
gories for the dimension of the hyperspectral cubes.The
most common of these are the nominal and the wider spa-
tial dimensions. Nominal dimensions are the default di-
mensions intended for the camera at launch and were ini-
tially the only dimensions supported by hardware com-
pression. Wide dimensions is a different set of dimen-
sions that captures a wider spatial area, and before the in-
troduction of reconfiguration on HYPSO-1, these images
have been compressed with the software implementation
on the CPU. The hardware compression on nominal im-
ages takes about 184 ms and the software compression
about 398 s [3]. Therefore, the hardware compression
saves more than 6 minutes of processing time after an im-
age capture. A long processing (compression) time after
each capture is a challenge for satellite operations, as it
makes captures of targets that are located geographically
close to each other difficult.

With the operating system image update on HYPSO-1
in March 2024, FPGA configurations with hardware com-
pression for the most used image dimensions have been
uploaded to the satellite. These are automatically reloaded
when the image dimensions of a new recording do not
match the dimensions of the currently loaded FPGA con-

Page 3 OI‘E

75% International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright © 2024 by the International Astronautical Federation (IAF). All rights reserved.

=
(=3
o

[| | |
HILH
80 1
60 A
401 mmm Other dimensions
201 Nominal dimensions

B Wide dimensions
| |

2022 Apr Jul Oct 2023 Apr Jul Oct 2024 Apr Jul
Months (Jan 2022 to Aug 2024)

Percentage of captures

Fig. 3. Percentage of dimensions captured on HYPSO-1

Size Mean time | o (SD)
Method [KB] [ms] [ms]
Partial 2852 61.16 1.05
Full 5840 111.62 1.16
Full + Overlay | 5840 252.50 4.00

Table 2. Mean time and standard deviation for different re-
configuration methods on OPU

figuration. An analysis of a set of 2316 captures from
HYPSO-1 is presented in Figure E It shows that between
the launch of HYPSO-1 in January 2022 and the image up-
date in March 2024, roughly 54% of the captures were of
nominal dimensions, and the rest of these captures used
software image compression. After the image update in
March, alternative dimensions such as the wide dimen-
sions could also use hardware compression. In the period
between 9" March and 31% July 2024, wide dimensions
make up more than 90% of the image captures, and di-
mensions that are not supported by hardware compression
make up less than 0.5% of the captures.

The reconfiguration process itself adds some time and
will affect the performance. To evaluate the impact of
this time, partial reconfiguration, full reconfiguration, and
full reconfiguration with devicetree overlay were tested 50
consecutive times each, and the results are shown in Ta-
ble . The time spent will vary based on the size of the con-
figuration files and the speed at which they are loaded. The
partial reconfiguration file for this test contained 2852 KB,
while the full configuration files contained 5840 KB. The
partial reconfiguration method in this test took almost half
the time of the full reconfiguration, and the devicetree
overlay more than doubled the time used in full reconfig-
uration. This time must be considered when reconfigur-
ing new FPGA designs for increased performance. For the
case of the reconfiguration of the hyperspectral compres-
sion algorithm, the hardware algorithm gains more than
6 minutes compared to the software algorithm on nominal
dimensions, and this method will gain performance even
with the slowest reconfiguration method. The extreme per-

IAC-24-B.4.6B.8

formance increase, in this case, makes the reconfiguration
time insignificant in comparison, and choosing the full re-
configuration method with the devicetree overlay for sim-
pler operation is a reasonable trade-off.

4. Conclusion

Supporting reconfiguration during regular satellite op-
erations makes it easier for researchers associated with the
HYPSO project to test new FPGA implementations on the
satellite. Using devicetree overlays with the FPGA con-
figuration introduced longer configuration times, but also
made software interaction with the designs easier due to
the use of native device drivers.

As a concrete example, reconfiguration of the FPGA
made hardware compression of hyperspectral images
more flexible for HYPSO-1, utilizing reconfiguration of
the on-board FPGA to compress a larger number of hyper-
spectral images than before. This saved processing time
after image captures and made satellite operations easier
while requiring only a fraction of a second more setup time
to perform the FPGA reconfiguration. This reconfigura-
tion framework will also be included in the new HYPSO-
2 satellite, that was launched in August 2024, depending
on a system image update.

References
[1] N. Montealegre, D. Merodio, A. Fernandez, and P.
Armbruster, “In-flight reconfigurable FPGA-based
space systems,” in 2015 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS), 2015,
pp- 1-8. por: 10.1109/AHS.2015.7231177.

[2] S. Bakken et al., “HYPSO-1 CubeSat: First Im-
ages and In-Orbit Characterization,” Remote Sens-
ing, vol. 15, no. 3, 2023, 1ssN: 2072-4292. por: 10.
3390/rs15030755.

[3] D. D. Langer et al., “Robust and Reconfigurable
On-Board Processing for a Hyperspectral Imag-
ing Small Satellite,” Remote Sensing, vol. 15,
no. 15, 2023, 1ssn: 2072-4292. por: 10 . 3390 /
rs15153756.

[4] M. Orlandié, J. Fjeldtvedt, and T. A. Johansen,
“A parallel fpga implementation of the ccsds-123
compression algorithm,” Remote Sensing, vol. 11,
no. 6, 2019, 1ssn: 2072-4292. por: 10 . 3390 /
rs11060673.

[5] R. Birkeland, S. Berg, M. Orlandic, and J. L. Gar-
rett, “On-Board Characterization Of Hyperspectral
Image Exposure And Cloud Coverage By Compres-
sion Ratio,” in 2022 12th Workshop on Hyperspec-
tral Imaging and Signal Processing: Evolution in

Page 4 of E

https://doi.org/10.1109/AHS.2015.7231177
https://doi.org/10.3390/rs15030755
https://doi.org/10.3390/rs15030755
https://doi.org/10.3390/rs15153756
https://doi.org/10.3390/rs15153756
https://doi.org/10.3390/rs11060673
https://doi.org/10.3390/rs11060673

75% International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.

Copyright © 2024 by the International Astronautical Federation (IAF). All rights reserved.

Remote Sensing (WHISPERS), 2022, pp. 1-5. por:
10.1109/WHISPERS56178.2022.9955117.

[6] S. L. Eine, “In-orbit testing of FPGA designs on
HYPSO-1,” Master thesis, Norwegian University
of Science and Technology, 2024.

[71 D. G. Perera, “Analysis of FPGA-Based Reconfig-
uration Methods for Mobile and Embedded Appli-
cations,” in Proceedings of the 12th FPGAworld
Conference 2015, ser. FPGAworld ’ 15, event-place:
Stockholm, Sweden, New York, NY, USA: Asso-
ciation for Computing Machinery, 2015, pp. 15—
20, 1sBN: 978-1-4503-3737-3. por: 10 . 1145 /
2889287 .2889297.

[8] Grant Likely, Linux and the Devicetree, 2012. [On-
line]. Available: https : // www . kernel . org/
doc/html/latest/devicetree/usage-model.
html (visited on 03/28/2024).

[9]1 S. Boyle, “Design Space Exploration of FPGA Ac-
celerators for Hyperspectral Anomaly Detection,”
English, M.S. thesis, Norwegian University of Sci-
ence and Technology, 2023. [Online]. Available:
https://ntnuopen . ntnu.no/ntnu-xmlui/
handle/11250/3093196.

[10] D. Vorhaug, “Hyperspectral Image Compression
Accelerator on FPGA Using CCSDS 123.0-B-2,”
Master thesis, Norwegian University of Science
and Technology, 2024.

IAC-24-B.4.6B.8 Page 5 of f}

https://doi.org/10.1109/WHISPERS56178.2022.9955117
https://doi.org/10.1145/2889287.2889297
https://doi.org/10.1145/2889287.2889297
https://www.kernel.org/doc/html/latest/devicetree/usage-model.html
https://www.kernel.org/doc/html/latest/devicetree/usage-model.html
https://www.kernel.org/doc/html/latest/devicetree/usage-model.html
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3093196
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3093196

	Introduction
	Implementation
	Motivation
	Reconfiguration methods
	Implementation into operations and processing pipeline
	Usecases

	Results and Discussion
	Conclusion

